Given a topological space (X,J) and ACX. How to define a topology for A which is coming from X?

Definition. $J|_{A} = \{G \cap A : G \in J\}$ is called the subspace topology, or relative topology, or

relative topology on A from X.

Exercise. One has to check the conditions that JA is really a topology.

Example. (X,J) = (R, std) and A = [a,b]

(are typical open sets in][[a,6]] They form a base.

Example. $(X,J) = (R, std), A = (1,2) \cup [3,4)$ Think about these questions.

* Which one is an open set in A?

(3,4) or [3,4)

* Is the set (1,2) closed in A?

Question. What are the induced topology on Q from (TR, std) or (TR, Lower-limit)?

From these example, we natural observe that for PCACX in (X,J) $P \in J \Longrightarrow P \in J|_A$ Condition

The condition is clearly $A \in J$, that is, if $A \in J$ then $P \in J \iff P \in J \mid A$.

Easy exercise. Is the converse true?

Exercise. Is it true that $|J|_p = (J|_A)|_p$?

Given (X, J) and ACX and

 $f: X \longrightarrow Y$, we also have $f|_{A}: A \longrightarrow Y$

Naturally, one would expect

f is continuous $\Longrightarrow f|_A$ is continuous

The proof is simply as below.

Let Ve Jy and we need to consider

 $(f|_A)^{-1}(V) = \underbrace{f'(V)}_{m,j} \cap A \in J|_A$ by definition

Key consideration.

If $f|_A$ is continuous on Many A's $C \times$, how to conclude f is continuous on X.

Bad example.
$$(X,J) = (\mathbb{R}, std)$$

Write $\mathbb{R} = (-\infty,0) \cup [0,\infty)$

This fite Doth
satisfies both

f/A, f/B are continuous
but f is not

Proposition. Given (X,J), $f:X \longrightarrow Y$ and $X = \bigcup G_{\alpha}$ where each $G_{\alpha} \in J$ If each $f|_{G_{\alpha}} : G_{\alpha} \longrightarrow Y$ is continuous then so is $f: X \longrightarrow Y$

Proof. Take arbitrary $V \in J_{\gamma}$,

$$f'(V) = f'(V) \cap (UG_{\alpha}) = U[f'(V) \cap G_{\alpha}]$$

$$= U[f(G_{\alpha})'(V)$$

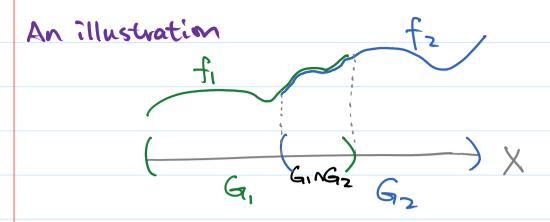
$$= U[f'(V) \cap G_{\alpha}]$$

$$= U[f'(V) \cap G_{\alpha}]$$

Hence f'(V) is a union of open sets in]

Another verien. Given X=UGz as above.

If we have a family of continuous nappings $f\alpha: G\alpha \longrightarrow Y$ sortisfying $f\alpha=f\beta$ on $G\alpha \cap G\beta$ then \exists continuous $f\colon X \longrightarrow Y$ such that $f|_{G\alpha}=f\alpha$



Then a continuous of can be defined on X.

Think. Compare this with previous bad example.

The "bad" becomes "good" on (R, Lower-limit).

Question. We need Ga & J in the above, can it

be changed or relaxed?

Proposition. Let $X=A\cup B$ where A,B are closed If $f:X\longrightarrow Y$ satisfies that both $f|_A$, $f|_B$ are continuous then so is f.

Proof The simplest one should involve an equivalent version G of continuity.

Take a closed $H \subset Y$ and consider $f'(H) = (f|A)'(H) \cup (f|B)'(H)$.

Remark. Obviously, for closed sets, only finitely many are allowed. Uniqueness Theorem. Given X and a Hausdorff Y, $A \subset X$ where A is dense, and continuous functions $f, g: X \longrightarrow Y$.

If flA = glA then f=g on X.

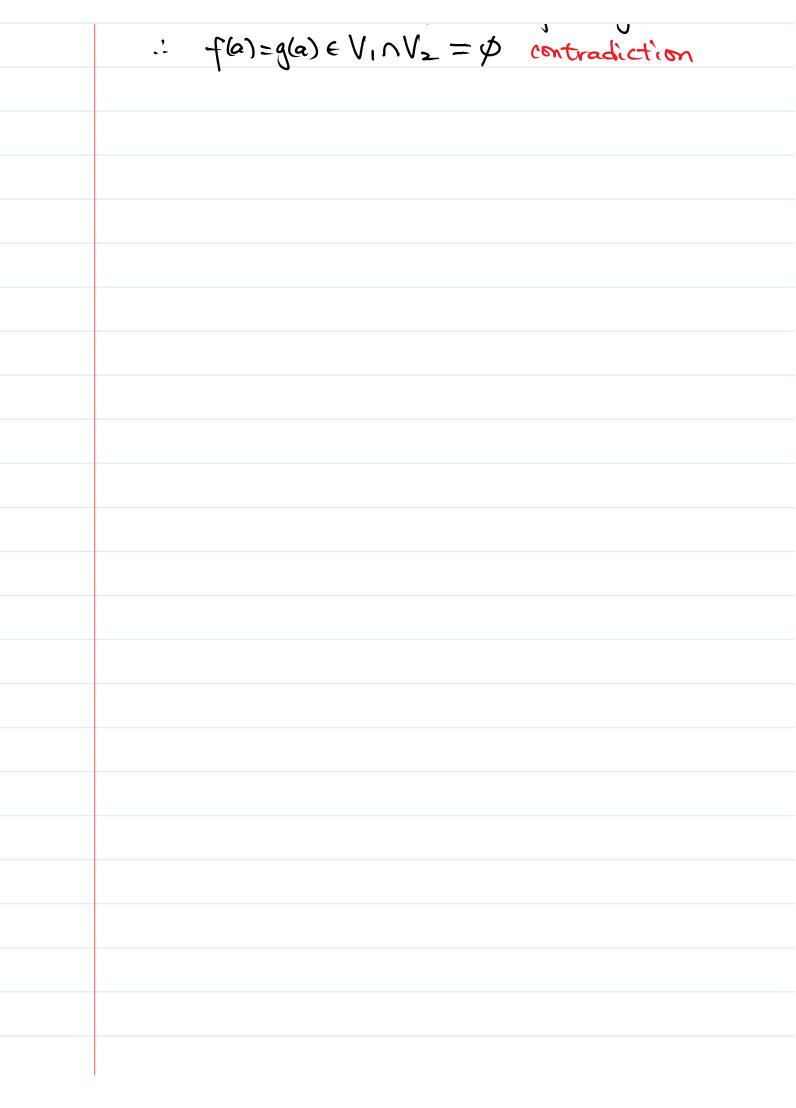
Remark. This theorem tells us that two figure are indeed the same one. It cannot be use to answer existence problem, eg. can we find a continuous $f: \mathbb{R} \to \mathbb{R}$ $f(\mathbb{R}_q) = \frac{1}{q}$ for each $\mathbb{R}_q \in \mathbb{R}$.

Proof. Need to prove $f(x) = g(x) \in Y \ \forall x \in X$ Observe that Hausdorff property tells us
what happens for $y_1 \neq y_2$ in YSo, we start by regation and look

for contradiction.

Suppose $\exists x \in X$, $f(x) \neq g(x)$. Then $\exists V_1, V_2 \in J_Y$, $f(x) \in V_1$, $g(x) \in V_2$, $V_1 \cap V_2 = \emptyset$

Then $x \in f'(V_i) \in J_X$, $x \in g'(V_2) \in J_X$ $\therefore x \in f'(V_i) \cap g'(V_2) \in J_X$ Since A = X, $f'(V_i) \cap g'(V_2) \cap A \neq \emptyset$ $\therefore \exists a, but f(a) = g(a)$



Thursday, February 9, 2017

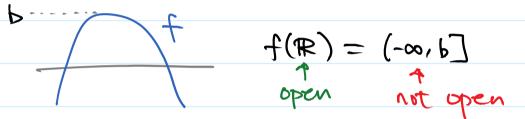
Definition. f: X -> Y is called

* homeomorphism if f is a bijection and both fif are continuous

* open mapping if \ U \ J_X, f(U) \ JY

Remark. A homeomorphism can be re-stated as a bijection which is both open and continuous.

Example. Continuous but not open



Example. Open but not continuous

(R, lower-limit) Exercise.

Verify this example.

(R, std)

Example. Open and continuous but

not homeomorphism

$$(R, std) \longrightarrow S' \subset (C=R^2, std)$$

$$\chi \longmapsto e^{2\pi i \chi}$$

